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FIG. 3. Freezing-front location along the plane of symmetry 
in a square corner. 

n Jiji et al. [9] 1.35 9.2 33.9 
0.553 9.2 22.4 
0.250 9.2 19.6 

A Lazaridis [lo] 0.257 1.111 0.50 
0 Rathjen and 

Jiji [12] 0.5,2.00 1.0 0.1-10 

CONCLUSIONS 

Solutions for pure conduction with the effective diffu- 
sivities defined by equations (10) and (12) were found to 
agree closely with exact solutions for the heat flux density 
and the freezing front location, respectively. Similar accuracy 
is to be expected for the heat flux density and phase-front 
location in any geometry and with any boundary conditions, 

except that the freezing-front location cannot be calculated 
from equation (8) if To - 7”. Corresponding approximations 
for the cases of convection in the liquid phase, a freezing 
range, moisture migration in wet soil, etc., can readily be 
formulated. The detailed temperature fields can also be 
calculated using these approximations, with equation (10) 
expected to give a better representation for the region near 
the surface and equation (12) near the freezing front. 
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NOMENCLATURE Greek symbols 
Biot number, = hw/2k,; B, 
fin effectiveness, = Q/hw(T,- T,); 

slope of thermal conductivity-temperature curve 

generation number, = qw/Zh(T,- T.); 
divided by intercept k,; 

0, dimensionless temperature; 
heat-transfer coefficient; s, 
thermal conductivity; 

thermal conductivity parameter; 

fin length; 
(ke -k,)/k, = B(r, - r,). 

fin parameter, = 2 
( > 

112 Subscripts 
L; a, environment ; 

L1 b, fin base. 
volumetric rate of heat generation; 
heat-transfer rate; INTRODU~ION 

temperature; 
fin thickness; 

IN FIN literature one finds several papers focussing attention 

axial distance measured from fin tip; 
on the effect of internal heat generation on the performance 

dimensionless axial distance, =x/L. 
of convective fins. For example, Minkler and Rouleau [l] 
studied rectangular and triangular fins with uniform internal 
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FIG. 1. Effect of temperature dependent thermal conduc- 
tivity on heat-transfer rate for a rectangular fin with uniform 

internal heat generation. 

heat generation but constant thermal conductivity and heat- 
transfer coefficient. A more general analysis for arbitrary fin 
profile with coordinate dependent heat generation, heat- 
transfer coefficient and thermal conductivity was presented 
by Melese and Wilkins [2]. Invoking the assumption of 
constant thermal conductivity Ahmadi and Razani [3] 
derived the optimal shape of a convective fin with coordinate 
dependent heat generation. 

The present work considers a uniformly thick rectangular 
convective fin with constant internal heat generation but 
linear thermal conductivity-temperature variation. This 
nonlinear problem can be solved numerically to predict the 
temperature distribution and heat-transfer rate. However, 
the problem of optimising fin dimensions still remains 
difficult. Here, as an alternative, an approximate pertur- 
bation solution is developed in which the constant thermal 
conductivity solution forms the zero order solution. Despite 
the approximation, the solution gives accurate results 
covering the range of parameters met in practice. Besides 
providing accurate prediction for temperature and heat- 
transfer rate, the solution permits (in a straight-forward 
manner) the optimisation of fin dimensions taking into 
consideration theeffect ofvariable thermal conductivity. The 
present paper constitutes an extension to the author’s pre- 
vious work [4,5] which dealt with a nongenerating convec- 
tive fin having temperature-dependent thermal conductivity. 

ANALYSIS 

Consider a rectangular fin of length L and thickness w 
generating heat at the rate of q per unit volume. Both faces 
of the fin convect heat to the environment at temperature 
T. and with constant heat-transfer coefficient h. The usual 
boundary conditions of constant base temperature & and 
insulated tip are assumed. Further, it is assumed that the 
thermal conductivity varies linearly with temperature and 
the relationship is expressed as 

k = k,[l+/?(T-T,)]. (1) 

Placing the origin at the tip, the one-dimensional fin equation 
together with aforesaid boundary conditions can be written 
in dimensionless form as 

&[II+s(#N’(&G) = 0 

x=0, $0; X=1, 0=1 

where 

X = x/L, 0 = (T- T.)/( G - T,), N2 = 2hL’/k, w, 

G = qw/Zh(T,- T,) = generation number (4) 
E = (kb - k,)/k, = /l(Tb - T,). 

Since for most fin materials and operational temperatures, 
E K 1 is valid, an asymptotic expansion of the form 

; ET” (5) 
“=O 

is appropriate. Substituting (5) into (2) and (3) and equating 
coefficients of like powers of s, a set of linear boundary value 
problems for &,, or,. . , etc. are generated which can be 
solved successively. Specifically, solutions for f3,,, O1 and O2 
were obtained but since the contribution of the second order 
term was found to be small, its presentation here is omitted 
to conserve space. Without giving the intermediate math- 
ematical details, the solution correct to O(s) is 

0= G+(l-G)sechNcoshNX 

+ E{ [f(l -G)’ sech’ N cash 2N 
+fG(l-G)NsechNtanhN]coshNX 
- f(1 -G)’ sech2 N cash 2NX 
-fNsechNG(l-G)XsinhNX) +O(s2). (6) 

The accuracy of the perturbation solution was checked 
by solving equations (2) and (3) numerically on a HP21OOS 
digital computer. Sixty solutions were obtained using the 
parametric values of N = 1.0, 1.5, 2.0, 2.5, 3.0; E = -10.2, 
f0.4; G = 0.1, 0.25, 0.50 which cover a wide range of fin 
applications. The maximum error between the perturbation 
and the numerical solutions was found to be about 2%. 
Detailed display of these results is omitted in favour of more 
useful design information on heat-transfer rate and opti- 
misation which follows. 

Using equation (6) the rate of heat-transfer Q patterned 
on the form given in [6] follows as 

QL 
k.w(G- TM 

= EBi”2 

where 

=(l-G)tanhN+s[+(l-G)‘tanh’N 

+ fG(1 - G)(tanh N - N sech’ N)] + O(E~) 

(7) 

E = Q/hw( Tb - T.) = fin effectiveness 

Bi = hw/fk. = Biot number. 
(8) 

A design chart based on equation (7) appears as Fig. 1 where 
EBi”* is plotted against N for G = 0.25 and 0.50 with E as 
the curve parameter. The values of G chosen here are 
typically encountered in practice. For example, [1] quotes 
values of G of 0.20-0.25 for finned nuclear reactor fuel 
elements. Figure 1 shows that as N increases, the effect of 
variable thermal conductivity on parameter EBi”’ becomes 
more pronounced. However, the effect is seen to diminish 
as G increases. For G = 1, EBi’j2 is always zero and 
represents the situation when there is no heat removal from 
the primary surface and only the internally generated heat 
is convected out from the fin surface. 

The criterion for optimum dimensions is that for a fixed 
profile area, wL, the heat-transfer rate should be maximum. 
Thus, from equation (7) the condition d Q/d w = 0 gives 
the following transcendental equation for optimum N 

(l-3G)sinh2N-6(1-G)N 
+ .s[& 1 - 6G + 5G2) sinh 2N tanh’ N 
-6(1-G)‘Ntanh2 N+$G(3-5G)sinh2N 
-6G(l -G)N2 tanhN-G(3-5G)N] = 0. (9) 
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The optimisation data is presented in Fig. 2 wherein Nap, 
obtained by solving equation (9) is plotted against E for a 
range of values of G. With the aid of Fig. 2, the optimum 
dimensioned fin for a specified heat generation can be readily 
designed allowing for thermal conductivity variation. 
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NOMENCLATURE 

A, B, dimensionless parameters; 
C,,, C13,constants; 

specitic heat of the fluid; 
Bessel functions; 
coefficients of evolution of temperature field; 
total heat flow ; 
ideal heat flow ; 
= r/rO, dimensionless radius, co-ordinate; 
radius, co-ordinate; 
radius of porous board; 
temperature of fluid; 
temperature of incoming fluid; 
temperature of porous material; 
temperature of circumference of porous board; 
specific mass throughflow ; 
= zJro, dimensionless co-ordinate; 
co-ordinate; 
= zo/r,, dimensionless height of porous board; 
height of porous board. 

Greek symbols 

a, coefficient of heat transfer; 
aI, zero points of function J,; 

8, specific area of heat transfer; 
Y? = I.,J,$, rate of orthotropy ; 

0 S, dimensionless temperature of porous material ; 
0 
n,l’ 

dimensionless temperature of fluid ; 
roots of characteristic polynome; 

I,, ,I,, thermal conductivities in axial and in radial 
directions ; 

A, component of temperature field ; 
cp, co-ordinate. 

INTRODUCTION 

THE HEAT exchangers of porous materials are of importance 
in number of applications, for example in an effective 
utilization of enthalpy of outgoing gaseous helium in 
throughflow cryostats, in refrigerators making use of dis- 
solution of 3He in 4He [ 11. 

This article presents a solution of stabilized temperature 
fields in a orthotropic porous material of cylindrical shape, 
thermally connected by its circumference to a body with 
temperature T,,. It can be higher or lower than the tempera- 
ture of incoming cooling (warming) medium T,,, flowing only 
in axial direction through the porous material (Fig. 1). 

The solution is found on the following assumptions: 
(a) The geometrical and physical parameters are axially 

symmetrical. 
(b) We regard the porous substance as a continuous and 

homogeneous environment (i.e. neglecting the microstruc- 
ture). 

(c) The heat is brought in solely by the outer circumference 
of the porous board, and removed by a transfer into the fluid, 
or conversely. 


